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Abstract

A formal power series f can be represented using the β-transformation T ′
β : f 7→ 1

f
−[ 1

f
]β

where |β| > 1 . So, f is expanded into [A0, A1, A2, . . .]β where (Ai)i≥0 are β-polynomials.
This later expression is called continued β-fraction expansion of f . The aim of this paper
is to characterize the formal power series with a finite continued β-fraction where β is a
unit Pisot series.
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1 Introduction

The continued fractions has been appeared in 1655 and more deeply studied by Euler how
was populated this theory. This representation of a real number x has this form

x = a0 +
1

a1 +
1

a2 +
1
. . .

:= [a0, a1, . . . , an . . . ]

where ai are integers for all i ≥ 0 and ai > 0 for i ≥ 1 defined by ai =
[

1
T i−1(x)

]
such that

T is the transformation defined by T (x) = 1
x
− [ 1

x
]. The ai are called the partial quotients.

This continued fraction is finite if and only if x ∈ Q.
Moreover, an other expansion theory, the β-expansion, of a real number x has been

introduced by A. Rényi [9]. Since then, its arithmetic, diophantine and ergodic properties
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has been extensively studied by several authors. For a real number β > 1, the β-expansion
of a real number x < 1 is defined as follows:

dβ(x) = x1x2x3...

where xi = [βT i−1
β (x)] such that Tβ is the β-transformation defined by Tβ(x) = βx− [βx].

Thus, we have x =
∑
i≥1

xi

βi .

For x > 1, since β > 1, there exists an unique integer n > 0 such that βn−1 ≤ x < βn.
So, we can write x

βn =
∑
i≥1

yi

βi where (yi)i≥1 is the β-expansion of x
βn . Thus, we have

x =
∞∑

i=−n

xiβ
−i with xi = yi−n.

We define the β-integer part of x by [x]β =
0∑

i=−n

xiβ
−i and the β-fractional part of x by

{x}β =
∑
i>0

xiβ
−i = x− [x]β. If {x}β = 0, then x is called β-integer and the set of β-integers

is denoted by Zβ.
Enomoto has introduced a similar algorithm of continued fractions by changing the

decimal base to obtain a new expansion of real numbers that is the continued fraction in
base φ where φ is the golden number: φ = 1+

√
5

2
. This expansion is a generalization of

Euclide ’s algorithm where the sequence of partial quotients consists of φ-integer. From
this algorithm J. Bernat [3] has proved that continued φ-fraction of x is finite if and only
if x ∈ Q(φ) (the smallest fields containing Q and φ).But given a complete characterization
of all bases seems to be very hard to achieve in the real case.

In this paper, we consider an analogue of this concept in algebraic function over finite
fields. The aim of this paper is to prove that any element of Fq(x, β) has a finite continued
β-fraction where β is a Pisot unit series.

2 Field of formal series Fq((x
−1))

Consider the finite field Fq where p is a prime number. We denote by Fq[x] the ring of
polynomials with coefficients in Fq and Fq(x) the field of fractions of Fq[x]. Let Fq((x

−1))
be the field of formal power series:

Fq((x
−1)) =

{
f =

∑
i≥n0

fix
−i : n0 ∈ Z and fi ∈ Fq

}
.

Let us define the degree of f =
∑

fix
−i by deg(f) = sup{−i : fi 6= 0} if f 6= 0 and

deg(0) = −∞. Thus, we define |f | = qdeg(f). Note that |.| is a not archimedean absolute
value over Fq((x

−1)). We also define the polynomial part of f by [f ] :=
∑

i≤0 fix
−i.

An element β ∈ Fq((x
−1)) is called algebraic integer over Fq[x] with degree d if its

minimal polynomial has the following form:

P (y) = yn + An−1y
n−1 + · · ·+ A0 where Ai ∈ Fq[x].
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When A0 ∈ F∗q, β is called unit.
An element β = β1 is called Pisot series if it is an algebraic integer over Fq[x], |β| > 1

and |βj| < 1 for all Galois conjugates βj. Since Fq[x] ⊂ Fq((x
−1)), every algebraic element

can be valuated. However, since Fq((x
−1)) is not algebraically closed, the Galois conjugates

of β need not necessarily be a power series.
The following theorem, proved in [1], characterize the Pisot power series:

Theorem 2.1. Let β ∈ Fq((x
−1)) be an algebraic integer over Fq[x] and its minimal

polynomial be
P (y) = yn + An−1y

n−1 + · · ·+ A0, Ai ∈ Fq[x]

Then β is a Pisot element if and only if |An−1| > max
i6=n−1

|Ai|.

2.1 continued fraction expansion in Fq((x
−1))

As in the classical context of real numbers, we have a continued fraction algorithm in
Fq((X

−1)). Let T the transformation defined by:

T : Mq → Mq

f 7→ 1
f
− [ 1

f
].

Then, for any f ∈ Mq, we have:

f =
1

a1 +
1

a2 +
1
. . .

= [0, a1, a2, . . .]

where (ai)i≥0 ∈ Fq[X] defined, for any positive integer n, by: an =

[
1

T n−1(f)

]
.

Let f ∈ Fq((X
−1)) and a0 = [f ], we have:

f = a0 +
1

a1 +
1

a2 +
1
. . .

= [a0, a1, a2, . . .].

The later expression is called continued fraction expansion of f and the sequence (ai)i≥0 is
called the sequence of partial quotients of f .
Define two sequences of polynomial (pn) n∈N and (qn) n∈N by:

(
a0 1
1 0

)(
a1 1
1 0

)
...

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)

So p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1 and for any n ≥ 2,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.
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We easily check that
PnQn−1 − Pn−1Qn = (−1)n−1

and
Pn

Qn

= [a0, a1, a2, . . . , an].

The rational fraction Pn

Qn
is called the nth−convergent of f . We have the following important

equality ∣∣∣∣f −
Pn

Qn

∣∣∣∣ = |an+1|−1|Qn|−2.

If Pn

Qn
is a convergent of f , then we have

∣∣∣f − Pn

Qn

∣∣∣ ≤ 1
|Qn|2 . So, the best rational approxi-

mation of f are its convergents

2.2 β-expansion in Fq((x
−1))

Let β, f ∈ Fq((x
−1)) with |β| > 1. A representation in base β (or β-representation) of a

formal series f ∈ Mq = {f ∈ Fq((X
−1)) : |f | < 1} is an infinite sequence (xi)i≥1, xi ∈ Fq[x],

such that

f =
∑
i≥1

xiβ
−i.

A particular β-representation of f , noted dβ(f), is called the β-expansion of f in base β
and obtained by using the β-transformation Tβ defined by:

Tβ : Mq → Mq

f 7→ βf − [βf ]

Then, for any f ∈ Mq, we have dβ(f) = 0.x1x2x3... where (xi)i≥1 are polynomials defined,
for any positive integer n, by

xi =
[
βT i−1

β (f)
]
.

For better characterization of β-expansion, M.Hbaib and M.Mkaouar in [6] showed the
following theorem.

Theorem 2.2. Let (ai)i≥1 be a β-representation of f ∈ Mq. Then, (ai)i≥1 is the β-
expansion of f if and only if |ai| < |β| for i ≥ 1.

Now let . By a similar way of the case of real numbers, we deduce dβ(f) for all
f ∈ Fq((x

−1)) with |f | ≥ 1. When there are only finitely many non-zero elements in dβ(f),
we say that f has a finite β-expansion. In this case, we omit the ending of consecutive
zeros and the set of power series having a finite β-expansion is denoted by Fin(β). In [5],
K. Scheicher has identified this set as Fq[x, β−1] (the minimal ring containing x and β−1)
when β is a Pisot series.

50



Remark 2.3. If β is a unit Pisot series, so Fq[x, β−1] = Fq[x, β] = Fin(β).

We define the β-polynomials part of f by [f ]β =
0∑

i=−n

xiβ
−i and the β-fractional part

of f by {f}β =
∑
i>0

xiβ
−i = f − [f ]β. If {f}β = 0, then f is called β-polynomial and the

set of β-polynomials is denoted by (Fq[x])β. We define also the set of β-fractions denoted
by (Fq(x))β of power series which can be taken as a fraction of two β-polynomials. We can
easy see that: (Fq[x])β ⊆ Fq[x, β] and (Fq(x))β ⊆ Fq(x, β).

3 continued β-fraction expansion algorithm

In this section we explain how to generalize the algorithm of the expansion in continued
fraction in the field of formal power series in base β ∈ Fq((x

−1)) with |β| > 1. This study
is very similar to the classical one with usual continued fractions.
Let T ′

β be the β-transformation defined by:

T ′
β : Mq → Mq

f 7→ 1
f
− [ 1

f
]β.

Then, for any f ∈ Mq, we have

f =
1

A1 +
1

A2 +
1
. . .

= [0, A1, A2, . . .]β,

where (Ai)i≥1 are β-polynomials defined, for any positive integer i, by:

Ai =

[
1

T
′(i−1)
β (f)

]

β

Let f ∈ Fq((X
−1)) and A0 = [f ]β, we have

f = A0 +
1

A1 +
1

A2 +
1
. . .

= [A0, A1, A2, . . .]β,

The later expression is called continued β-fraction expansion of f , the sequence (Ai)i≥0 is
called the sequence of partial β-quotients of f and the quantities fn defined by:
f = [A0, A1, A2, . . . , fn]β are called nth complete β-quotients.
We define two sequences (Pn) n∈N and (Qn) n∈N in Fq[x, β] by:





P0 = A0, Q0 = 1
P1 = A0A1 + 1, Q1 = A1

Pn = AnPn−1 + Pn−2, Qn = AnQn−1 + Qn−2∀n ≥ 2
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Pn

Qn

= [A0, A1, A2, ..., An]β is called the nth β-reduced of f .

A similar way of the usual continued fractions, allow us to prove this theorem:

Theorem 3.1. The sequence of β-reduced of f ∈ Fq((x
−1)) is converging to f .

Proof. Let f = [A0, A1, ..., An, An+1, ...]β and let g be its nth complete β-quotients, so

f = [A0, A1, ..., An, g]β =
gPn + Pn−1

gQn + Qn−1

Qnf = Pn(
gQn + Qn−1

gQn + Qn−1

) +
Pn−1Qn − PnQn−1

gQn + Qn−1

= Pn +
(−1)n

gQn + Qn−1

Since |g| > |An+1| > |β| and |Qn| < |Qn+1| we obtain

|f − Pn

Qn

| < 1

|β||Qn|2

Let f ∈ Fq((x
−1)), we call that f is locally β-approximation by elements of Fq(x, β)

when there exist an unfinite elements P
Q

of Fq(x, β), A ∈ F∗q, an integer r > 0 such that

|Qf − P | < A

|β||Q|r

In fact, the β-reduced are characterized by the locally best β-approximation property given
in this proposition:

Proposition 3.1. Let f ∈ Fq((x
−1)), Pn

Qn
be its nth β-reduced and S ∈ Fq[x, β] be such that

|S| < |Qn|
|β| then, for all R ∈ Fq[x, β], |Qnf − Pn| < |Sf −R|.

Proof. To see this, suppose without loss of generality that |Qn−1| < |S| < |Qn| and note

that, because PnQn−1 − Pn−1Qn = (−1)n−1, the matrix

(
Pn Pn−1

Qn Qn−1

)
is unimodular, so

there exist two β-polynomial A and B such that

S = AQn + BQn−1 and R = APn + BPn−1.

Then,
Sf −R = A(Qnf − Pn) + B(Qn−1f − Pn−1)

and the evident fact that |B| > |A| > |β| > 1 shows that, indeed

|Sf −R| > |Qn−1f − Pn−1| > |Qnf − Pn|
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Proposition 3.2. Let P and Q ∈ Fq[x, β] such that |Qf − P | < 1
|β||Q| . Then, P

Q
is a

β-reduced of f .

Proof. Let A ∈ Fq[x, β] such that |A| < |Q|. There exist B ∈ Fq[x, β] such that

1

|β| < |QB − PA| = |A(Qf − P )−Q(Af −B)|

Since |A(Qf−P )| < 1
|β| , we have |Q(Af−B)| > 1

|β| . Whence, |Af−B| > 1
|β||Q| > |Qf−P |

this entails that P
Q

is indeed a locally best β-approximation and by Proposition 3.1, P
Q

is a
β-reduced of f .

4 Finiteness of continued β-fraction expansion

The aim of this section is to prove the following theorem:

Theorem 4.1. Let f ∈ Fq((x
−1)) and β be a Pisot unit power formal series, then f has a

finite continued β-fraction if and only if f ∈ Fq(x, β).

It is clear that a finite continued β-fraction represents an element of Fq(x, β), and it is
natural to ask whether the reciprocal property holds.

We remark that we need first to define a canonical way to expand elements of Fq(x, β).
The following proposition allows us to expand any element of Fq(x, β) as a β-fraction.

Proposition 4.1.

Let β be a unit Pisot series, then Fq(x, β) = (Fq(x))β

Proof.
Let f ∈ Fq(x, β), so there exist Ai ab=nd Bi both belong to F[x] such that

f =

n∑
i=0

Aiβ
i

m∑
i=0

Biβi

where n,m < deg(β).

Since β is a unit Pisot series and by Remark 2.3, we have
n∑

i=0

Aiβ
i and

m∑
i=0

Biβ
i in Fin(β),

so

f =

p∑
i=−r

Piβ
i

q∑
i=−s

Qiβi
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where p, q < deg(β) and |Pi| < |β| and |Qi| < |β|.
Let k = max(r, s) so

f =

p∑
i=−r

Piβ
i+k

q∑
i=−s

Qiβi+k

hence f ∈ (Fq(x))β.

Proof of Theorem 4.1. Let f ∈ Fq(x, β) = (Fq(x))β (by Proposition 4.1), so there exist
A and B both belong to (Fq[x])β such that f = A

B
.

We have [Bf ]β = [A]β = Bf = A hence {Bf}β = {A}β = 0.
This implies that

|Bf − [Bf ]β| = 0 <
1

|β||B|
By Proposition 3.2, we deduce that A

B
is a β-reduced of f .

Then, f = Pn

Qn
= [A0, ..., An] which is a finite continued β-fraction expansion.
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International Journal of Number Theory p. 365-377, (2006).

[7] M. Mkaouar: Sur le dveloppement en fraction continue des séries formelles quadratiques
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