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Continued [-fractions in the field of formal
power series
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where || > 1. So, f is expanded into [Ag, A, Ao, ...]g where (4;);>o are f-polynomials.
This later expression is called continued (-fraction expansion of f. The aim of this paper
is to characterize the formal power series with a finite continued (-fraction where 3 is a

unit Pisot series.

A formal power series f can be represented using the 3-transformation 77 : f —

Classification Mathematic Subject: 11R06, 37B50.
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1 Introduction

The continued fractions has been appeared in 1655 and more deeply studied by Euler how
was populated this theory. This representation of a real number = has this form
1
T=a+ ——— — = l[ag, a1, ..., a,...]
a; +
ag + —

where a; are integers for all © > 0 and a; > 0 for ¢ > 1 defined by a; = [T%l(x)] such that

T is the transformation defined by T'(z) = 1 — [1]. The a; are called the partial quotients.
This continued fraction is finite if and only if z € Q.

Moreover, an other expansion theory, the (-expansion, of a real number x has been
introduced by A. Rényi [9]. Since then, its arithmetic, diophantine and ergodic properties
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has been extensively studied by several authors. For a real number 3 > 1, the S-expansion
of a real number x < 1 is defined as follows:

ds(r) = x12973...

where x; = [ﬁTg_l(x)] such that Tj is the S-transformation defined by Ts(x) = Sz — [Bz].

"
Thus, we have x = ; 5
For x > 1, since 8 > 1, there exists an unique integer n > 0 such that " ! < x < ™.
So, we can write ﬁ% = z— where (y;);>1 is the [-expansion of [% Thus, we have
i>1

(o]
T = Z ;07" with 2 = yin.
i=—n

0
We define the (-integer part of z by [z]s = . 2;67" and the (-fractional part of by
{x}s =D " =x—|z]g. If {x}g = 0, then x is called S-integer and the set of S-integers
is denote>ciJ by Zg.

Enomoto has introduced a similar algorithm of continued fractions by changing the
decimal base to obtain a new expansion of real numbers that is the continued fraction in
base ¢ where ¢ is the golden number: ¢ = %g This expansion is a generalization of
Euclide ’s algorithm where the sequence of partial quotients consists of ¢-integer. From
this algorithm J. Bernat [3] has proved that continued ¢-fraction of x is finite if and only
if z € Q(¢) (the smallest fields containing Q and ¢).But given a complete characterization
of all bases seems to be very hard to achieve in the real case.

In this paper, we consider an analogue of this concept in algebraic function over finite
fields. The aim of this paper is to prove that any element of F,(z, #) has a finite continued

[B-fraction where 3 is a Pisot unit series.

2 Field of formal series F,((z™!))

Consider the finite field F, where p is a prime number. We denote by F,[z] the ring of
polynomials with coefficients in F, and F,(z) the field of fractions of F,[z]. Let F,((z™'))
be the field of formal power series:

Fo((z 1) ={f =2 fit™" - no€Z and f; €F,}.

Let us define the degree of f = Y fiz™" by deg(f) = sup{—i : f; # 0} if f # 0 and
deg(0) = —oo. Thus, we define |f| = ¢?°8). Note that |.| is a not archimedean absolute
value over F,((z7!)). We also define the polynomial part of f by [f] =, fiz ™"

An element 3 € F,((z7')) is called algebraic integer over F,[z] with degree d if its
minimal polynomial has the following form:

Ply)=y"+ Ap 1y "+ + Ay where A; € F,[x].



49

When Ag € F}, 3 is called unit.

An element § = f3; is called Pisot series if it is an algebraic integer over F,[z], |G| > 1
and |3;| < 1 for all Galois conjugates 3;. Since F,[z] C F,((z™')), every algebraic element
can be valuated. However, since F,((z™1)) is not algebraically closed, the Galois conjugates
of 3 need not necessarily be a power series.

The following theorem, proved in [1], characterize the Pisot power series:

Theorem 2.1. Let € F,((z71)) be an algebraic integer over F,[x] and its minimal
polynomial be
Py) =y" + Anay" '+ 4+ Ao, Ai € Fyfa]

Then B is a Pisot element if and only if |A,—1| > max |A;].

2.1 continued fraction expansion in F ((z71))

As in the classical context of real numbers, we have a continued fraction algorithm in
F,((X™1)). Let T the transformation defined by:

T: M, — M,
fe5-15
Then, for any f € M,, we have:
1
f - 1 [07 ay, Gz, ]
ai +
ag + —
e 1
where (a;);>0 € Fy[X] defined, for any positive integer n, by: a, = {T”—l(f)} :
Let f € F,((X 1)) and ag = [f], we have:
1
f=ay+ i = [ag, a1, asg, .. ..
ot

a2+—

The later expression is called continued fraction expansion of f and the sequence (a;);>¢ is
called the sequence of partial quotients of f.
Define two sequences of polynomial (p,) nen and (g,) nen by:

Qg 1 ay 1 G, 1 _ Pn Pn-
1 0 1 0)7\U1 0) \ @ ¢
S0 po = ap, go = 1, p1 = apa; + 1, g1 = a; and for any n > 2,

Pn = ApPn—1 + Pn—2, n = GpQn-1 + Gn—2-
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We easily check that
Pnanl - Pnlen = (_1)n71

and

o |

-~ = |[Q0,A1,0A2,...,0p].

@n
The rational fraction 5—” is called the n'*—convergent of f. We have the following important
equality

P, _ _
‘f - Q_n = |an+1| 1|Qn| 2'
n

If % is a convergent of f, then we have ‘ f— 5—" < |Q1 ER So, the best rational approxi-

mation of f are its convergents

2.2 (-expansion in F,((z71))

Let 3, f € F,((z™")) with |3] > 1. A representation in base 3 (or S-representation) of a
formal series f € M, = {f € F,((X™1)) : |f] < 1} is an infinite sequence (z;);>1, T; € F,[z],
such that

[ o= Z zi

i>1

A particular S-representation of f, noted dg(f), is called the S-expansion of f in base
and obtained by using the g-transformation 7 defined by:

Ts: M, — M,
f=Bf—1[8f]

Then, for any f € M,, we have dg(f) = 0.z12923... where (z;);>1 are polynomials defined,
for any positive integer n, by

X, = [ﬁTé_l(f)} :

For better characterization of (-expansion, M.Hbaib and M.Mkaouar in [6] showed the
following theorem.

Theorem 2.2. Let (a;);>1 be a [(-representation of f € M,. Then, (a;);>1 is the (-
expansion of f if and only if |a;| < |B| fori > 1.

Now let . By a similar way of the case of real numbers, we deduce dg(f) for all
f €F,((z71)) with | f] > 1. When there are only finitely many non-zero elements in dg(f),
we say that f has a finite J-expansion. In this case, we omit the ending of consecutive
zeros and the set of power series having a finite S-expansion is denoted by Fin(3). In [5],
K. Scheicher has identified this set as F,[z, 37!] (the minimal ring containing = and 571)
when [ is a Pisot series.
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Remark 2.3. If 3 is a unit Pisot series, so F [z, 7] = F [z, 8] = Fin(p).

0
We define the S-polynomials part of f by [f]g = > ;87" and the [-fractional part

it=—n

of fby {f}s=>mB "= f—][flg. It {f}s =0, then f is called B-polynomial and the
>0

set of J-polynomials is denoted by (F,[z])s. We define also the set of §-fractions denoted

by (F,(x))s of power series which can be taken as a fraction of two S-polynomials. We can

easy see that: (F,[z])s C F,lz, 5] and (F,(z))s C Fy(x, 5).

3 continued (-fraction expansion algorithm

In this section we explain how to generalize the algorithm of the expansion in continued
fraction in the field of formal power series in base 3 € F,((x™!)) with |3 > 1. This study
is very similar to the classical one with usual continued fractions.

Let T} be the S-transformation defined by:

T/é M, — M,
=g =15s
Then, for any f € M,, we have
fe =0, AL A s
Ay + —

where (A;);>1 are S-polynomials defined, for any positive integer i, by:
; ]
i—1
TN ],

Let f € F,((X 1)) and Ay = [f]s, we have

1
1

A=

f=A0+ = [Ao, A1, Ao, .. g,

At —
Ay + —

The later expression is called continued [-fraction expansion of f, the sequence (4;);> is
called the sequence of partial S-quotients of f and the quantities f,, defined by:

f=1Ao, A1, As, ..., f]s are called n' complete S-quotients.

We define two sequences (F,) nen and (@) nen in Fylz, 5] by:

P(]:AO?QO:]-

P =AA +1,0, =4
Pn - AnPn—l + Pn—?a Qn = AnQn—l + Qn—?vn > 2
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P,
= = [Ag, Ay, Ay, ..., Ay is called the n' B-reduced of f.

nA similar way of the usual continued fractions, allow us to prove this theorem:
Theorem 3.1. The sequence of B-reduced of f € F,((x™)) is converging to f.
Proof. Let f = [Ap, Ay, ..., An, Api1, ...]g and let g be its n'* complete S-quotients, so

an+Pn—1
= [Ag, Ay, Ay gl = 2ot
f [ ° ' g]ﬂ an+Qn—1

an + anl Pnlen — Pnanl
an + anl an + anl
(="

an + Qn—l

Since |g| > |Ans1| > 6] and |Qy| < |@Qny1]| We obtain

_ &| < ;
Qn  [6]|Qnl?

an = Pn(

— P, +

f

Let f € F,((z7!)), we call that f is locally 3-approximation by elements of F,(x, 3)
when there exist an unfinite elements g of Fy(z,5), A€ 7, an integer 7 > 0 such that
A
BllQl"

In fact, the S-reduced are characterized by the locally best G-approximation property given
in this proposition:

Qf = P| <

Proposition 3.1. Let f € F,((z71)), % be its n'" B-reduced and S € F,[z, 3] be such that

S| < 1L then, for all R € Fylw, 8], |Quf — Pu| <|Sf — RJ.

Proof. To see this, suppose without loss of generality that |Q,_1| < |S| < |@,| and note
that, because P,Qn_1 — P_1Q,, = (—1)""!, the matrix ( P, P,

" is unimodular, so
Qn Qn—l
there exist two §-polynomial A and B such that

S = AQ, + BQ,_, and R = AP, + BP,_,.

Then,
Sf—R=AQunf - Fu) + B(Qu-1f — Fa-1)
and the evident fact that |B| > |A| > |3] > 1 shows that, indeed

1Sf = Rl > |@n1f = Paca| > |@nf — B



Proposition 3.2. Let P and Q € F [z, (] such that |Qf — P| < \Bllﬁ Then, g s a
B-reduced of f.
Proof. Let A € F [z, (] such that |A| < |Q|. There exist B € F [z, §] such that
1
ER QB — PA| = [A(Qf — P) = Q(Af — B)|
Since |A(Qf —P)| < ﬁ, we have |Q(Af —B)| > \%I Whence, |Af — B| > Wlel > |Qf — P

this entails that g is indeed a locally best f-approximation and by Proposition 3.1, g is a
(B-reduced of f.

4 Finiteness of continued (-fraction expansion

The aim of this section is to prove the following theorem:

Theorem 4.1. Let f € F,((z7')) and (8 be a Pisot unit power formal series, then f has a
finite continued [(-fraction if and only if f € F,(x, 3).

It is clear that a finite continued (-fraction represents an element of F (x, 3), and it is
natural to ask whether the reciprocal property holds.

We remark that we need first to define a canonical way to expand elements of F,(z, 3).
The following proposition allows us to expand any element of F,(z, §) as a S-fraction.

Proposition 4.1.
Let 3 be a unit Pisot series, then Fy(z,3) = (F,(x))s

Proof.
Let f € Fy(x, ), so there exist A; ab=nd B; both belong to Fjz] such that
A
F =
> Bif
i=0

where n,m < deg(3).

Since 3 is a unit Pisot series and by Remark 2.3, we have Y A;3" and > B;3' in Fin(3),
=0 i=0
SO
p

pORLs
f _ z—q—'r
> Qp

1=—S
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where p, ¢ < deg(f) and |P;| < 3] and |Qi| < |5].
Let k = max(r, s) so
P )
Z PiﬂH_k
f _ z:q—r .
_z: Qiﬁ1+k

hence f € (F,(2))g.

Proof of Theorem 4.1. Let f € Fy(x,3) = (Fy(x))s (by Proposition 4.1), so there exist
A and B both belong to (F,[z])s such that f = 4.
We have [Bf]s = [A]g = Bf = A hence {Bf}z = {A}z = 0.
This implies that .

16]1B]

By Proposition 3.2, we deduce that % is a (-reduced of f.

Then, [ = % = [Ay, ..., A,] which is a finite continued [-fraction expansion.

|Bf —[Bflsl =0 <
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