
On Rational Solutions

of the Diophantine Equations

X2 − (t2 − t)Y 2 − (4t− 2)X + (4t2 − 4t)Y = 8

Amara Chandoul
Institut Supérieure d’Informatique et de Multimedia de Sfax,

Route de Tunis km 10, B.P. 242, Sfax, Tunisia
E-mail : amarachandoul@yahoo.fr

Oussama Dammak
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Abstract

Let t ≥ 2 be a positive integer. This paper deals with some formulas
for the integer solutions of the Diophantine equation (E) : X2 − (t2 −
t)Y 2 − (4t− 2)X + (4t2 − 4t)Y = 8.
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1 Introduction

Diophantus in his Aritmetika deals with the search for rational (not necessarily
integral) solutions of special types of Diophantine equations. The general
theory of solving of Diophantine equations of the first degree was developed
by C.G. Bachet in the 17th century; for more details on this subject see Linear
equation. P. Fermat, J. Wallis, L. Euler, J.L. Lagrange, and C.F. Gauss in the
early 19th century mainly studied Diophantine equations of the form

ax2 + bxy + cy2 + dx + ey + f = 0

where a, b, c, d and f are integers, i.e. general inhomogeneous equations
of the second degree with two unknowns. Lagrange used continued fractions
in his study of general inhomogeneous Diophantine equations of the second
degree with two unknowns. Gauss developed the general theory of quadratic
forms, which is the basis of solving certain types of Diophantine equations.
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In this paper, we will proceed to study rational solutions of the Diophantine
equation

(E) : X2 − (t2 − t)Y 2 − (4t− 2)X + (4t2 − 4t)Y = 8

where, t ≥ 1 be an integer. Here and in what follows we shall mean by a
solution a rational solution.

2 Main results

In this section, we consider the solutions of the Diophantine equation

(E) : X2 − (t2 − t)Y 2 − (4t− 2)X + (4t2 − 4t)Y = 8

where, t ≥ 1 and l ≥ 1 be two integers.

Theorem 2.1 (X1, Y1) = (8t − 4, 8) is the fundamental solution of the Dio-
phantine equation (E).

Proof. It is easily seen that (X1, Y1) = (8t − 4, 8) is a solution of the
Diophantine equation (E), since (8t − 4)2 − (t2 − t)(8)2 − (4t − 2)(8t − 4) +
(4t2 − 4t)8 = 8.

Theorem 2.2 Let

(
un

vn

)
=

(
2t− 1 2(t2 − t)

2 2t− 1

)n (
3
0

)
(1)

for n ≥ 1. Then (Xn, Yn) =
( un

3n−1
+ 2t− 1,

vn

3n−1
+ 2

)
is a solution of (E).

To prove this theorem, we need the following results.

Theorem 2.3 Let (x1, y1) be the fundamental solution of the Pell equation
x2 −Dy2 = 9, and let

(
un

vn

)
=

(
x1 Dy1

y1 x1

)n (
1
0

)
(2)

for n ≥ 1. Then the integer solutions of the Pell equation x2 − Dy2 = 9 are
(xn, yn), where

(xn, yn) =
( un

3n−1
,

vn

3n−1

)
(3)



On rational solutions of Diophantine equations 33

Proof. We prove the theorem using the method of mathematical induction.
For n = 1, we have from ( 2), (u1, v1) = (x1, y1) which is the fundamental
solution of x2−Dy2 = l2. Now, we assume that the Pell equation x2−Dy2 = 9
is satisfied for (xn−1, yn−1), i.e.

x2
n−1 −Dy2

n−1 =
u2

n−1 −Dv2
n−1

k2n−4
= 9 (4)

and we show that it holds for (xn, yn).

Indeed, by ( 2), it is easy to prove that

{
un = x1un−1 + Dy1vn−1

vn = y1un−1 + x1vn−1
(5)

Hence,

x2
n −Dy2

n =
u2

n −Dv2
n

32n−2
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(x1un−1 + Dy1vn−1)

2 −D(y1un−1 + x1vn−1)
2

32n−2

=
x2

1u
2
n−1 + 2x1un−1Dy1vn−1 + D2y2

1v
2
n−1

32n−2

−D(y2
1u

2
n−1 + 2y1un−1x1vn−1 + x2

1v
2
n−1)

32n−2

=
x2

1(u
2
n−1 −Dv2

n−1)−Dy2
1(u

2
n−1 −Dv2

n−1)

32n−2

= (x2
1 −Dy2

1)
(u2

n−1 −Dv2
n−1)

32n−2

Applying ( 4), it is easily seen that

u2
n−1 −Dv2

n−1 = k2n−4k2 = 32n−2.

Hence we conclude that

x2
n −Dy2

n = (x2
1 −Dy2

1) = 9.

Therefore (xn, yn) is also a solution of the Pell equation x2−Dy2 = 9. Since n
is arbitrary, we get all integer solutions of the Pell equation x2 −Dy2 = 9.

Lemma 2.4 (x1, y1) = (6t−3, 6) is the fundamental solution of the Pell equa-
tion x2 −Dy2 = 9.
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Proof. (of Theorem 2.2) we have

X2 − (t2 − t)Y 2 − (4t− 2)X + (4t2 − 4t)Y

=
( un

3n−1
+ 2t− 1

)2

− (t2 − t)
( vn

3n−1
+ 2

)2

− (4t− 2)
( un

3n−1
+ 2t− 1

)

+ (4t2 − 4t)
( vn

3n−1
+ 2

)

=
( un

3n−1

)2

− (t2 − t)
( vn

3n−1

)2

− 1 = 8.

Theorem 2.5 The solutions (Xn, Yn) of the Diophantine equation (E), satisfy
the recurrence relations





Xn =
(2t− 1)Xn−1 + 2(t2 − t)Yn−1 − 8t2 + 8t− 1

3
+ 2t− 1

Yn =
2Xn−1 + (2t− 1)Yn−1 − 8t + 4

3
+ 2

(6)

Proof. It is clear that un = (2t− 1)un−1 + 2(t2 − t)vn−1. Then, we get

3n−1(xn − (2t− 1)) = (2t− 1)3n−2(xn−1 − (2t− 1)) + 23n−2(t2 − t)(yn−1 − 2),

which gives

3(xn − (2t− 1)) = (2t− 1)(xn−1 − (2t− 1)) + 2(t2 − t)(yn−1 − 2),

hence

Xn =
(2t− 1)Xn−1 + 2(t2 − t)Yn−1 − 8t2 + 8t− 1

3
+ 2t− 1.

And, similarly, we get

Yn =
2Xn−1 + (2t− 1)Yn−1 − 8t + 4

3
+ 2
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2.1 Algorithm

function [X, Y ] = solution (n, t)
X = [(8t− 4)];

Y = [8];

for i = 2 : n

A =
(2t− 1)Xi−1 + 2(t2 − t)Yi−1 − 8t2 + 8t− 1

3
+ 2t− 1;

B =
2Xi−1 + (2t− 1)Yi−1 − 8t + 4

3
+ 2;

X = [X, A]; Y = [Y,B];
end

.
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