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Abstract

Let t > 2 be a positive integer and p > 1 be any fixed integer.
Extending the work of A. Tekcan, here we consider the number of integer
solutions of Diophantine equation E : x? — (t? —t)y? — ((2p)*t — 2p)x +
((2p)%t% — (2p)*t)y = 0. We also obtain some formulas and recurrence
relations on the integer solution (x,,y,) of E. Equally, we are able to
solve the equation E : u? — (12 — t)v® = p? + 4t(p* — p®) which is a
simple transformation of F via an appropriate transformation 7.

subject classes: 11Dxx, 11D09, 11D79.
Keywords: Pell’s equation, Diophantine equation, solutions.

1 Introduction

A Diophantine equation is an algebraic equation whose coefficients lie in the
ring Z of rational integers and whose solutions are sought in that ring. The
name comes from Diophantus, an Alexandrian mathematician of the third
century A.D., who proposed many Diophantine problems ; but such equations
have a very long history, extending back to ancient Egypt, Babylonia, and
Greece. In general, the Diophantine equation is an equation given by

az® +bxy + ey’ +dr+ey+ f=0.

The equation
2 —dy* =1

is a special case of Diophantine equation, known as the Pell equation.

Pell’s equation x?> — Dy? = 1 was solved by Lagrange in terms of simple
continued fractions. Lagrange was the first to prove that 22 — Dy? = 1 has
infinitly many solutions in integers if D # 1 is a fixed positive non-square
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integer. If the lenght of the periode of v/D is I, all positive solutions are given
by © = Pyyr—1 and y = Qopi—1 if kis odd, and by x = Py and y = Qi1 if k£

is even, where v = 1,2, ... and —= denotes the nth convergent of the continued

fraction expansion of V/D. Incidentally, © = Poy—1)(k—1) and y = Q2v—1)(k—1)
v = 1,2,..., are the positive solutions of 22 — Dy? = —1 provided that [ is
odd.

There is no solution of 22 — Dy? = £1 other than z,,y, : v = 1,2,...
given by (z1 + \/Eyl)” = 2,4+ v/ Dy,, where z,,y; is the least positive solution
called the fundamental solution, which there are different method for finding
it. The reader can find many references in the subject in the book [9].

For completeness we recall that there are many papers in which are con-
sidered different types of Pell’s equation. Many authors such as Tekcan [3],
Kaplan and Williams [4], Matthews [5], Mollin, Poorten and Williams [6],
Stevenhagen [7] and the others consider eome specific Pell equations and their
integer solutions. A. Tekcan in [3], considered the equation z* — Dy? = +4,
and he obtained some formulas for its integer solutions. He mentioned two
conjecture which was proved by A. S. Shabani [§]. In [1], we considered the
Pell equation x? — Dy* = +k? when D # 1 be a positive non-square and k > 2,
we obtain some formulas for its integer solutions.

2 The Diophantine Equation z* — (t* — t)y* —
((2p)°t — 2p)z + ((2p)°¢* — (2p)*t)y = 0

Let t > 2 be an integer. In [2], A. Tekcan consider the number of integer
solutions of Diophantine equation D : z?—(t*—t)y*— (4t —2)z+(4t>—4t)y = 0
over Z. He also derive some recurrence relations on the integer solutions (,, ¥»)
of D. In the present paper, we consider the integer of Diophantine equation

E o= =ty — ((2p)*t = 2p)z + ((2p)°° — (2p)*t)y =0 (1)

over Z, where t > 2 and p > 1 be two integers.

Note that the resolution of E in its present form is very difficult, that is,
we can not determine how many solutions £ has and what they are. So, we
have to transform FE into an appropriate Diophantine equation which can be
easily solved. To get this let

Jr=u+h
T : {y:v+k (2)

be a translation for some h and k.
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By applying the transformation 7" to F, we get
T(E) :=E: (u+h)?—(2—t)(v+k)?*—((2p)% —2p)(u+h) (3)
+((2p)* = 2p)*) (v + k) =0
In ( 3), we obtain u(2h+2p — (2p)*t) and v(—2kt* + 2kt + (2p)?t* — (2p)*t).

So we get h = 2p*t — p and k = 2p?. Consequently for x = u + 2p*t — p and
y = v + 2p?, we have the Diophantine equation

E : w?— (12—t = p? +4t(p* — p*) (4)

which is a Pell equation.
It is clear that D, considered in [2], is a particular case of E (p = 1).
Now, we try to find all integer solutions (u,,v,) of T(F) and then we can
retransfer all results from T'(E) to E by using the inverse of T

Theorem 2.1 Let E be the Diophantine equation in ( 3), then
(1) The fundamental solution of E is (u1,v1) = (2p*t — p, 2p?).

(2) Define the sequence (uy,v,) by
u N _ ( 20°t—p
V1 - 2p2
Un 20 -1 202 =2t \"' [(w
= >
<vn) ( 2 2t—1> (vg)’vn—z

Then (un,vy) is a solution of E.

(3) The solutions (un,v,) satisfy the recurrence relations
Up = (2t — Duyq + (262 — 2t)v, 4
U = 2Up_1 + (2t — v,

formn > 2

(4) The solutions (u,,v,)
Uy = (4t — 3)(Up—1 + Up_2) — Up_3

Up = <4t - 3)(1}7171 + ’Un72) — Up-3
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forn >4
(5) The n-th solution (u,,v,) can be given by

U 412,262, 2202 1,2p— 1| ,¥n > 1. (8)
vn ~ v~
n—1 times

Proof.
(1) Tt is easily seen that (uy,vy) = (2p* — p,2p?) is the fundamental solution

of E, since (2p°t — p)? — (12 — 1)(2p%)? = p* + 4t(p* — p3).

(2) We prove it using the method of mathematical induction. Let n = 1,
by ( 5) we get (u1,v;) = (2p*t — p, 2p?) which is the fundamental solution and
so is a solution of E. Now, we assume that the Diophantine equation ( 4) is
satisfied for n, that is £ : u2 — (2 — t)v2 = p? + 4t(p* — p?). We try to show
that this equation is also satisfied for n + 1. Applying ( 5), we find that

Unt1 2t —1 2t -2t Uy
Un+1 t — 1 V2
2t—1 22 — 9t -1 22 -2t \"" [
2t — 1 2 2 — 1 Vs
2t —1 22 -2t U,
2t —1 Up,

_ ( (2t — D)u, + (22 — 2t)v,, )
B iy, + (2t — 1oy,

Hence, we conclude that

(9)

Wi — (=)0, =[(2t — Dy + (262 = 2)0,)° — (2 — ) [2u, + (2t — D)v,)
= up, — (2 =)oy = p? +4t(p" — p°).
SO (Ups1,vn+1) is also solution of E.
(3) Using ( 9), we find that
= (2t — Dup_1 + (2% — 2t)v,_4

Uy = 2Up_1 + (2t — 1)v,q
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for n > 2

(4) We prove it using the method of mathematical induction. For n = 4,
we get

up = 2p%t —p

uy = 8p*t2 —2(3p* +p)t +p

uz = 32p*t* — 8(5p? + p)t? + 2(5p* + 4p*)t — p
and

uy = 1282t — 32(7p? + p)t3 + 16(7p* + 3p)t? — 2(7p? + 9p)t + p. Hence

ug = 128p*t* — 32(7p* + p)t® + 16(7p? + 3p)t* — 2(7p* + Ip)t + p.
= (4t — 3)[32p?t3 — (32p® + 8p)t* + (4p* + 6p)t] — (2p*t — p)
= (4t — 3)[32p*t2 — 8(5p? + p)t2 + 2(5p? + 4p®)t — p + 8p*t2 — 2(3p* + p)t
+p] — (2p*t — p)
= (4t = 3)(us + uz) — 1.

So uy, = (4t — 3) (tp—1 4+ Up_2) — Uy,_3. is satisfied for n = 4. Let us assume that
this relation is satisfied for n, that is,

Up = (4t — 3)(Up—1 + Up—2) — Up_3. (10)
Then using ( 9) and ( 10), we conclude that
Up41 = (4t - 3) (un + un—l) — Up—2,

completing the proof.
Similarly, we prove that v, = (4t — 3)(v,—1 + Vn—2) — U3, Vn > 4.

(5) We prove it using the method of mathematical induction. For n = 1,
we have 02 .
u t—

U1 2]72 1
+ 2p—1

which is the fundamental solution of E. Let us assume that the n-th solution
(U, vy) is given by

Uy 12,962, 2202 1,2p— 1
/l}n NG ~~ /
n—1 times

and we show that it holds for (u, 1, Yni1)-
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Using ( 6) , we have
(2t — D)u, + (22 — 2t)v,,

Un+1 _
Ung1 2u, + (2t — 1)v,
20t = Dup Fup + (2t = 1)t — Do, + (t— 1oy,
N 2u, + (2t — 1)v,
1
=t—1+ I
2+ m
t—1+-—2
Un
as
Up, 1
t—14+—2 =t—1+t—1+ T
Un
24 1
...... + 1
1
+2p—1
1
=2t—2+ 1
2+ 1
2t — 2+ 1
2t — 2+ 1
1
+2p—1
we get
n 1
Untl 4 14 -
2t — 2 + 1
2+ 1
..+ 1
2t — 2+ I
1+

= [t—1;2,2t—2,---,2,2t —2,1,2p — 1

~
n times
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completing the proof.

As we reported above, the Diophantine equation £ could be transformed
into the Diophantine equation E via the transformation 7. Also, we showed
that v = u + 2p*t —p and y = v + 2p%. So, we can retransfer all results from
E to E by applying the inverse of T. Thus, we can give the following main
theorem

Theorem 2.2 Let D be the Diophantine equation in ( 1). Then

(1) The fundamental (minimal) solution of E is (x1,y1) = (4p*t — 2p, 4p*)
(2) Define the sequence {(Tn,Yn)tn>1 = {(un + 2p*t — p,v, + 2p*)}, where
{(xn,yn)} defined in ( 5). Then (x,,y,) is a solution of E. So it has infinitely
many integer solutions (Tn,yn) € Z X Z.

(3) The solutions (x,,y,) satisfy the recurrence relations

Ty = (2t — Dap_1 + (262 — 2t)y,—1 — 8p*t* + (8p* + 2p)t — 2p

(11)
Yp = 201 + (2t — V)yn_1 — 8p*t + 4p* + 2p

forn > 2

(4) The solutions (un,vy,) satisfy the recurrence relations

Tp = (4t — 3)(Tp_1 + Tp_2) — T,z — 16p*t* + (16p* + 8p)t — 8p
(12)
Yn = (4t — 3)(Yn1 + Yn_2) — Yn_3 — 16p*t + 16p°.

forn >4

Example 2.3 Lett =4 and p = 2. Then (uy,v1) = (30, 8) is the fundamental
solution of B
E v’ —120* =132

and some other solutions are

() () (8)
() (21 (2)- (%)
(1) -2 () (=)
() - (21 (2) - ()
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Further u 30
o= 3;,1,3] = )
Z_z =[3;2,6,1,3] = %23
Z_z =[3;2,6,2,6,1,3] = %
Z_j: =[3;2,6,2,6,2,6,1,3] = %
Z_: =[3;2,6,2,6,2,6,2,6,1,3] = 1:),01835499862

It can be concluded now, that the fundamental solution of
E : 2> =12y — 60z + 192y = 0

is (60,16). Some other solutions are

i) . 432

Y2 o 124

zs\ [ 5628

ys )\ 1624

zs \ {78000
ue ]~ \ 22516
25\ [ 1086012
ys |~ \ 313504
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