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Abstract

Let t ≥ 2 be a positive integer and p ≥ 1 be any fixed integer.
Extending the work of A. Tekcan, here we consider the number of integer
solutions of Diophantine equation E : x2− (t2− t)y2− ((2p)2t−2p)x+
((2p)2t2 − (2p)2t)y = 0. We also obtain some formulas and recurrence
relations on the integer solution (xn, yn) of E. Equally, we are able to
solve the equation Ẽ : u2 − (t2 − t)v2 = p2 + 4t(p4 − p3) which is a
simple transformation of E via an appropriate transformation T.

subject classes: 11Dxx, 11D09, 11D79.
Keywords: Pell’s equation, Diophantine equation, solutions.

1 Introduction

A Diophantine equation is an algebraic equation whose coefficients lie in the
ring Z of rational integers and whose solutions are sought in that ring. The
name comes from Diophantus, an Alexandrian mathematician of the third
century A.D., who proposed many Diophantine problems ; but such equations
have a very long history, extending back to ancient Egypt, Babylonia, and
Greece. In general, the Diophantine equation is an equation given by

ax2 + bxy + cy2 + dx+ ey + f = 0.

The equation
x2 − dy2 = 1

is a special case of Diophantine equation, known as the Pell equation.
Pell’s equation x2 − Dy2 = 1 was solved by Lagrange in terms of simple

continued fractions. Lagrange was the first to prove that x2 − Dy2 = 1 has
infinitly many solutions in integers if D ̸= 1 is a fixed positive non-square
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integer. If the lenght of the periode of
√
D is l, all positive solutions are given

by x = P2vk−1 and y = Q2vk−1 if k is odd, and by x = Pvk−1 and y = Qvk−1 if k

is even, where v = 1, 2, . . . and
Pn

Qn

denotes the nth convergent of the continued

fraction expansion of
√
D. Incidentally, x = P(2v−1)(k−1) and y = Q(2v−1)(k−1),

v = 1, 2, . . ., are the positive solutions of x2 − Dy2 = −1 provided that l is
odd.

There is no solution of x2 − Dy2 = ±1 other than xv, yv : v = 1, 2, . . .
given by (x1+

√
Dy1)

v = xv +
√
Dyv, where x1, y1 is the least positive solution

called the fundamental solution, which there are different method for finding
it. The reader can find many references in the subject in the book [9].

For completeness we recall that there are many papers in which are con-
sidered different types of Pell’s equation. Many authors such as Tekcan [3],
Kaplan and Williams [4], Matthews [5], Mollin, Poorten and Williams [6],
Stevenhagen [7] and the others consider eome specific Pell equations and their
integer solutions. A. Tekcan in [3], considered the equation x2 − Dy2 = ±4,
and he obtained some formulas for its integer solutions. He mentioned two
conjecture which was proved by A. S. Shabani [8]. In [1], we considered the
Pell equation x2−Dy2 = ±k2 when D ̸= 1 be a positive non-square and k ≥ 2,
we obtain some formulas for its integer solutions.

2 The Diophantine Equation x2 − (t2 − t)y2 −
((2p)2t− 2p)x + ((2p)2t2 − (2p)2t)y = 0

Let t ≥ 2 be an integer. In [2], A. Tekcan consider the number of integer
solutions of Diophantine equationD : x2−(t2−t)y2−(4t−2)x+(4t2−4t)y = 0
over Z. He also derive some recurrence relations on the integer solutions (xn, yn)
of D. In the present paper, we consider the integer of Diophantine equation

E : x2 − (t2 − t)y2 − ((2p)2t− 2p)x+ ((2p)2t2 − (2p)2t)y = 0 (1)

over Z, where t ≥ 2 and p ≥ 1 be two integers.
Note that the resolution of E in its present form is very difficult, that is,

we can not determine how many solutions E has and what they are. So, we
have to transform E into an appropriate Diophantine equation which can be
easily solved. To get this let

T :

{
x = u+ h
y = v + k

(2)

be a translation for some h and k.
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By applying the transformation T to E, we get

T (E) := Ẽ : (u+ h)2 − (t2 − t)(v + k)2 − ((2p)2t− 2p)(u+ h)
+((2p)2t2 − (2p)2t)(v + k) = 0

(3)

In ( 3), we obtain u(2h+2p− (2p)2t) and v(−2kt2+2kt+(2p)2t2− (2p)2t).
So we get h = 2p2t − p and k = 2p2. Consequently for x = u + 2p2t − p and
y = v + 2p2, we have the Diophantine equation

Ẽ : u2 − (t2 − t)v2 = p2 + 4t(p4 − p3) (4)

which is a Pell equation.
It is clear that D, considered in [2], is a particular case of E (p = 1).
Now, we try to find all integer solutions (un, vn) of T (E) and then we can

retransfer all results from T (E) to E by using the inverse of T.

Theorem 2.1 Let Ẽ be the Diophantine equation in ( 3), then

(1) The fundamental solution of Ẽ is (u1, v1) = (2p2t− p, 2p2).

(2) Define the sequence (un, vn) by

(
u1

v1

)
=

(
2p2t− p

2p2

)
(

un

vn

)
=

(
2t− 1 2t2 − 2t

2 2t− 1

)n−1 (
u1

v2

)
, ∀n ≥ 2.

(5)

Then (un, vn) is a solution of Ẽ.

(3) The solutions (un, vn) satisfy the recurrence relations
un = (2t− 1)un−1 + (2t2 − 2t)vn−1

vn = 2un−1 + (2t− 1)vn−1

(6)

for n ≥ 2

(4) The solutions (un, vn)
un = (4t− 3)(un−1 + un−2)− un−3

vn = (4t− 3)(vn−1 + vn−2)− vn−3

(7)
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for n ≥ 4
(5) The n-th solution (un, vn) can be given by

un

vn
=

t− 1; 2, 2t− 2, · · · , 2, 2t− 2︸ ︷︷ ︸
n−1 times

, 1, 2p− 1

 , ∀n ≥ 1. (8)

Proof.
(1) It is easily seen that (u1, v1) = (2p2t − p, 2p2) is the fundamental solution

of Ẽ, since (2p2t− p)2 − (t2 − t)(2p2)2 = p2 + 4t(p4 − p3).

(2) We prove it using the method of mathematical induction. Let n = 1,
by ( 5) we get (u1, v1) = (2p2t− p, 2p2) which is the fundamental solution and

so is a solution of Ẽ. Now, we assume that the Diophantine equation ( 4) is

satisfied for n, that is Ẽ : u2
n − (t2 − t)v2n = p2 + 4t(p4 − p3). We try to show

that this equation is also satisfied for n+ 1. Applying ( 5), we find that

(
un+1

vn+1

)
=

(
2t− 1 2t2 − 2t

2 2t− 1

)n (
u1

v2

)

=

(
2t− 1 2t2 − 2t

2 2t− 1

)(
2t− 1 2t2 − 2t

2 2t− 1

)n−1 (
u1

v2

)

=

(
2t− 1 2t2 − 2t

2 2t− 1

)(
un

vn

)

=

(
(2t− 1)un + (2t2 − 2t)vn

2un + (2t− 1)vn

)
(9)

Hence, we conclude that

u2
n+1 − (t2 − t)v2n+1 = [(2t− 1)un + (2t2 − 2t)vn]

2 − (t2 − t) [2un + (2t− 1)vn]
2

= u2
n − (t2 − t)v2n = p2 + 4t(p4 − p3).

So (un+1, vn+1) is also solution of Ẽ.

(3) Using ( 9), we find that
un = (2t− 1)un−1 + (2t2 − 2t)vn−1

vn = 2un−1 + (2t− 1)vn−1
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for n ≥ 2

(4) We prove it using the method of mathematical induction. For n = 4,
we get
u1 = 2p2t− p
u2 = 8p2t2 − 2(3p2 + p)t+ p
u3 = 32p2t2 − 8(5p2 + p)t2 + 2(5p2 + 4p2)t− p
and
u4 = 128p2t4 − 32(7p2 + p)t3 + 16(7p2 + 3p)t2 − 2(7p2 + 9p)t+ p. Hence

u4 = 128p2t4 − 32(7p2 + p)t3 + 16(7p2 + 3p)t2 − 2(7p2 + 9p)t+ p.
= (4t− 3)[32p2t3− (32p2 + 8p)t2 + (4p2 + 6p)t]− (2p2t− p)
= (4t− 3)[32p2t2 − 8(5p2 + p)t2 + 2(5p2 + 4p2)t− p+ 8p2t2 − 2(3p2 + p)t
+p]− (2p2t− p)
= (4t− 3)(u3 + u2)− u1.

So un = (4t−3)(un−1+un−2)−un−3. is satisfied for n = 4. Let us assume that
this relation is satisfied for n, that is,

un = (4t− 3)(un−1 + un−2)− un−3. (10)

Then using ( 9) and ( 10), we conclude that

un+1 = (4t− 3)(un + un−1)− un−2,

completing the proof.
Similarly, we prove that vn = (4t− 3)(vn−1 + vn−2)− vn−3, ∀n ≥ 4.

(5) We prove it using the method of mathematical induction. For n = 1,
we have

u1

v1
=

2p2t− p

2p2
= t− 1 +

1

1 +
1

2p− 1

= [t− 1; 1, 2p− 1]

which is the fundamental solution of Ẽ. Let us assume that the n-th solution
(un, vn) is given by

un

vn
=

t− 1; 2, 2t− 2, · · · , 2, 2t− 2︸ ︷︷ ︸
n−1 times

, 1, 2p− 1

 .

and we show that it holds for (un+1, yn+1).
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Using ( 6) , we have

un+1

vn+1

=
(2t− 1)un + (2t2 − 2t)vn

2un + (2t− 1)vn

=
2(t− 1)un + un + (2t− 1)(t− 1)vn + (t− 1)vn

2un + (2t− 1)vn

= t− 1 +
1

2 +
1

t− 1 +
un

vn

as

t− 1 +
un

vn
= t− 1 + t− 1 +

1

2 +
1

· · · · · ·+ 1

2t− 2 +
1

1 +
1

2p− 1

= 2t− 2 +
1

2 +
1

2t− 2 +
1

· · ·+ 1

2t− 2 +
1

1 +
1

2p− 1

we get

un+1

vn+1

= t− 1 +
1

2 +
1

2t− 2 +
1

2 +
1

2t− 2 +
1

· · ·+ 1

2t− 2 +
1

1 +
1

2p− 1

=

t− 1; 2, 2t− 2, · · · , 2, 2t− 2︸ ︷︷ ︸
n times

, 1, 2p− 1

 .
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completing the proof.
As we reported above, the Diophantine equation E could be transformed

into the Diophantine equation Ẽ via the transformation T. Also, we showed
that x = u + 2p2t − p and y = v + 2p2. So, we can retransfer all results from
Ẽ to E by applying the inverse of T. Thus, we can give the following main
theorem

Theorem 2.2 Let D be the Diophantine equation in ( 1). Then
(1) The fundamental (minimal) solution of E is (x1, y1) = (4p2t− 2p, 4p2)
(2) Define the sequence {(xn, yn)}n≥1 = {(un + 2p2t − p, vn + 2p2)}, where
{(xn, yn)} defined in ( 5). Then (xn, yn) is a solution of E. So it has infinitely
many integer solutions (xn, yn) ∈ Z× Z.
(3) The solutions (xn, yn) satisfy the recurrence relations

xn = (2t− 1)xn−1 + (2t2 − 2t)yn−1 − 8p2t2 + (8p2 + 2p)t− 2p

yn = 2xn−1 + (2t− 1)yn−1 − 8p2t+ 4p2 + 2p
(11)

for n ≥ 2

(4) The solutions (un, vn) satisfy the recurrence relations
xn = (4t− 3)(xn−1 + xn−2)− xn−3 − 16p2t2 + (16p2 + 8p)t− 8p

yn = (4t− 3)(yn−1 + yn−2)− yn−3 − 16p2t+ 16p2.
(12)

for n ≥ 4

Example 2.3 Let t = 4 and p = 2. Then (u1, v1) = (30, 8) is the fundamental
solution of

Ẽ : u2 − 12v2 = 132

and some other solutions are(
u2

v2

)
=

(
7 24
2 7

)(
30
8

)
=

(
402
116

)
(

u3

v3

)
=

(
7 24
2 7

)2(
30
8

)
=

(
5598
1616

)
(

u4

v4

)
=

(
7 24
2 7

)3(
30
8

)
=

(
77970
22508

)
(

u5

v5

)
=

(
7 24
2 7

)4(
30
8

)
=

(
1085982
313496

)
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Further
u1

v1
= [3; , 1, 3] =

30

8

u2

v2
= [3; 2, 6, 1, 3] =

402

116

u3

v3
= [3; 2, 6, 2, 6, 1, 3] =

5598

1616

u4

v4
= [3; 2, 6, 2, 6, 2, 6, 1, 3] =

77970

22508

u5

v5
= [3; 2, 6, 2, 6, 2, 6, 2, 6, 1, 3] =

1085982

313496

It can be concluded now, that the fundamental solution of

E : x2 − 12y2 − 60x+ 192y = 0

is (60, 16). Some other solutions are(
x2

y2

)
=

(
432
124

)
(

x3

y3

)
=

(
5628
1624

)
(

x4

y4

)
=

(
78000
22516

)
(

x5

y5

)
=

(
1086012
313504

)
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